Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/819
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLagachu, Jyosmita-
dc.date.accessioned2017-10-18T14:39:37Z-
dc.date.available2017-10-18T14:39:37Z-
dc.date.issued2017-07-14-
dc.identifier.urihttp://hdl.handle.net/123456789/819-
dc.description.abstractRiemann - Roch Theorem plays a significant role in the theory of Riemann Surfaces, which gives us certain estimate about number of linearly independent meromorphic functions subject to certain restrictions on their poles. In this dissertation we will understand the prerequisites of Riemann - Roch Theorem and will use the tools of sheaf, cohomology theory to describe it. We will generalize it and try to give a generalised proof of the theorem.en_US
dc.description.sponsorshipIISER-Men_US
dc.language.isoenen_US
dc.publisherIISER-Men_US
dc.subjectMathematicsen_US
dc.subjectRiemann Surfacesen_US
dc.subjectCurvesen_US
dc.subjectSurfacesen_US
dc.titleThe Riemann-Roch Theorem for Compact Riemann Surfaces en_US
dc.typeThesisen_US
Appears in Collections:MS-12

Files in This Item:
File Description SizeFormat 
MS-12010.pdf19.96 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.