Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/810
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Rohan-
dc.date.accessioned2017-10-17T10:13:29Z-
dc.date.available2017-10-17T10:13:29Z-
dc.date.issued2017-07-14-
dc.identifier.urihttp://hdl.handle.net/123456789/810-
dc.description.abstractIn this thesis, I will discuss the first three chapters of the \Galois Groups and Fundamental Groups" by Tamas Szamuely([Sza]). Chapter 1 deals with basics of field theory, Galois theory and contains an introduction to Etale algebras. We will prove the categorical anti-equivalence of continuous left Gal(k)-sets with finite etale algebras over k. Chapter 2 deals with certain results from algebraic topology using which we obtain a categorical equivalence between category of left-Pi1(X; x) sets and category of covers of X. In Chapter 3 study Riemann surfaces and holomorphic map. The covers over Riemann surfaces create a link between field theory and theory of covers. We show that the category of finite covers of X outside a finite discrete set of points is equivalent to the category of Riemann surfaces equipped with holomorphic maps onto X. Further, in this chapter, we establish that every finite group occurs as Galois group of some finite Galois extension of C(t).en_US
dc.description.sponsorshipIISER-Men_US
dc.language.isoenen_US
dc.publisherIISER-Men_US
dc.subjectMathematicsen_US
dc.subjectField Theoryen_US
dc.subjectGalois Groupsen_US
dc.subjectGroupsen_US
dc.subjectAlgebraic Topologyen_US
dc.subjectRiemann Surfacesen_US
dc.titleGalois Groups and Fundamental Groupsen_US
dc.typeThesisen_US
Appears in Collections:MS-12

Files in This Item:
File Description SizeFormat 
MS-12035.pdf23.98 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.