Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJhingonia, Anil Kumar-
dc.date.accessioned2016-09-13T08:59:23Z-
dc.date.available2016-09-13T08:59:23Z-
dc.date.issued2015-06-25-
dc.identifier.urihttp://hdl.handle.net/123456789/702-
dc.description.abstractThe primal-dual method is a standard tool in the design of algorithms for combinato- rial optimization problems. It is a very powerful method. This method can be used to obtain a good approximation algorithm from which we can get a good combinatorial algorithm. It can also be used to prove good performance for combinatorial algo- rithms. Max- ow Min-cut is a very nice example of primal dual method. we would like to interpret its primal, then obtain its dual, interpret the dual and then prove the max- ow min-cut theorem using the strong duality.en_US
dc.description.sponsorshipIISER-Men_US
dc.language.isoenen_US
dc.publisherIISER-Men_US
dc.subjectMathematicsen_US
dc.subjectMatrixen_US
dc.subjectEllipsoid Algorithmen_US
dc.subjectPrimal Dual Algorithmen_US
dc.titleStudy of Combinatorial Optimizationen_US
dc.typeThesisen_US
Appears in Collections:MS-09

Files in This Item:
File Description SizeFormat 
MS-09015.pdf53.68 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.