Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1557
Full metadata record
DC FieldValueLanguage
dc.contributor.authorM, Gautam Neelakantan.-
dc.contributor.authorKaur, Jotsaroop-
dc.date.accessioned2021-12-08T18:15:35Z-
dc.date.available2021-12-08T18:15:35Z-
dc.date.issued2021-07-28-
dc.identifier.urihttp://hdl.handle.net/123456789/1557-
dc.description.abstractIn the setting of the results proved by R.S Strichartz in the paper ”Lp Harmonic Analysis and Radon transforms on the Heisenberg Group”, we study the Lp spectral theory of the operator (−L)(iT)−1 obtained from the functional calculus of the operators L (the sublaplacian on the Heisenberg group) and T = ∂/∂t. We develop Littlewood-Paley theory for this operator using its heat semigroup. By establishing the Lp boundedness of the corresponding Littlewood-Paley g-function we prove a stronger result that Abel sums of the spectral projections converge almost everywhere as an extension to the Lp spectral theorem by proved R.S Strichartz.en_US
dc.language.isoen_USen_US
dc.publisherIISERMen_US
dc.subjectHarmonicen_US
dc.subjectHeisenbergen_US
dc.subjectLpen_US
dc.titleLp harmonic analysis on the heisenberg groupen_US
dc.typeThesisen_US
Appears in Collections:MS-16

Files in This Item:
File Description SizeFormat 
MS16060.docx12.32 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.