Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorS A, Nandagopal.-
dc.contributor.authorSardar, Pranab.-
dc.date.accessioned2021-12-07T18:47:58Z-
dc.date.available2021-12-07T18:47:58Z-
dc.date.issued2021-07-28-
dc.identifier.urihttp://hdl.handle.net/123456789/1490-
dc.description.abstractThe project Topology, geometry and analysis on surfaces discusses various topo- logical and geometric aspects of surfaces. It starts with understanding the classi- fication of closed surfaces. Then there is a brief revision of Riemannian geometry followed by discussion on the fundamental theorem of surface theory by Bon- net. After this Hilbert’s lemma and the scope of constant curvature metrics on the surfaces are briefly discussed. Thesis ends with a discussion on the Gauss- Bonnet theorem.en_US
dc.language.isoen_USen_US
dc.publisherIISERMen_US
dc.subjectTopologyen_US
dc.subjectGeometryen_US
dc.subjectSurfacesen_US
dc.titleTopology, Geometry and Analysis on Surfacesen_US
dc.typeThesisen_US
Appears in Collections:MS-16

Files in This Item:
File Description SizeFormat 
MS16019.docx11.56 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.