Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1162
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerma, Harsh-
dc.date.accessioned2019-11-21T10:31:08Z-
dc.date.available2019-11-21T10:31:08Z-
dc.date.issued2019-11-21-
dc.identifier.urihttp://hdl.handle.net/123456789/1162-
dc.description.abstractThe aim of the thesis is to study the potential theory of some subordinate Brownian motions. More precisely, we establish the asymptotic behaviour of the Green function and the L ́evy density of some subordinate Brownian motions. We study the tools and techniques used in a research paper known as Potential Theory of Geometric Stable Processes and use similar methods to prove the asymptotic behaviour of the Green function and the L ́evy density of two new subordinated Brownian motions. We also try to compute the asymptotic behaviour using an alternative approach.en_US
dc.language.isoen_USen_US
dc.publisherIISERMen_US
dc.subjectL ́evy densityen_US
dc.subjectBrownian motionen_US
dc.subjectGeometric Stable Processesen_US
dc.subjectGreen functionen_US
dc.titlePotential Theory of Some Subordinate Brownian Motionsen_US
dc.typeThesisen_US
Appears in Collections:MS-14

Files in This Item:
File Description SizeFormat 
MS14061.pdf37.58 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.