Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1058
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2018-12-27T17:11:17Z-
dc.date.available2018-12-27T17:11:17Z-
dc.date.issued2018-12-27-
dc.identifier.urihttp://hdl.handle.net/123456789/1058-
dc.description.abstractLet C be a smooth projective curve of genus g ≥ 2 and let L be a globally generated line bundle on C. The evaluation map gives rise to an exact sequence 0 → E ∗ L → Γ(C, L)C → L → 0 of vector bundles on C and E is a vector bundle of rank h 0 (C, L) − 1. Let Σi ⊂ Γ(C, ∧ iE) be the cone of locally decomposable sections in ∧ iE. We state: Conjecture The cone Σi spans Γ(C, ∧ iE) for all i and for all globally generated line bundles L on all curves C. We prove: Main Result (Simplified) Above conjecture is true for a hyperelliptic curve C with a globally generated line bundle L of degree d ≥ 2g + 3.en_US
dc.description.sponsorshipIISERMen_US
dc.language.isoenen_US
dc.publisherIISERMen_US
dc.subjectMathematicsen_US
dc.subjectLinear Systemsen_US
dc.subjectGreen’s Conjectureen_US
dc.titleOn a Conjecture on Linear Systemsen_US
dc.typeThesisen_US
Appears in Collections:PhD-2010

Files in This Item:
File Description SizeFormat 
PH10072.pdf23.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.