
Abstract

Let $\mathrm{K}=\mathrm{Q}(\theta)$ be an algebraic number field with θ in the ring OK of algebraic integers of K and $f(x)$ be the minimal polynomial of θ over the field Q of rational numbers. For a rational prime p , let $\mathrm{f}(\mathrm{x})=\mathrm{g} 1(\mathrm{x}) \mathrm{e} 1 \ldots . \mathrm{gr}(\mathrm{x})$ er be the factorization of the polynomial $\mathrm{f}(\mathrm{x})$ obtained by replacing each coefficient of $f(x)$ modulo p into product of powers of distinct irreducible polynomials over Z / pZ with gi (x) monic. In 1878, Dedekind proved that if p does not divide [OK : $\mathrm{Z}[\theta]]$, then $\mathrm{pOK}=$ $\wp 1 \mathrm{e} 1 \ldots . . \wp \mathrm{rer}$, where $\wp 1, \ldots ., \wp \mathrm{r}$ are distinct prime ideals of OK , $\wp \mathrm{i}=\mathrm{pOK}+$ gi (θ) OK with residual degree of ($\wp \mathrm{i} / \mathrm{p}$) $=\operatorname{deg}$ gi (x) where $\mathrm{i}=1,2, \ldots$.. He also gave a criterion which says that p does not divide [OK : $\mathrm{Z}[\theta]$] if and only if for each i , we have either ei $=1$ or gi (x) does not divide $\mathrm{M}(\mathrm{x})$ where $\mathrm{M}(\mathrm{x})=\mathrm{p}(\mathrm{f}(\mathrm{x})-\mathrm{g} 1(\mathrm{x}) \mathrm{e} 1 \ldots . \mathrm{gr}(\mathrm{x})$ er $)$. In this work we prove the theorem and the criterion too while giving applications its due. Appears in Collections:

